
AI Transformation in Enterprise is Imperative


Ganesh Harinath, VP of Engineering, AI Platform & Applications, Verizon Media
The AI revolution is poised to be the next biggest innovative revolution after the internet and is already disrupting how we build, travel, secure and live. In some ways, what was once science fiction is now just becoming science, with AI already being democratized through software as service offerings. Companies like Salesforce and Oracle are enabling their AI prediction and forecasting capabilities for a host of customer scenarios.
Churn, customer experience, personalization and demand prediction are some areas where AI enablement has the potential to help improve efficiencies and increase revenue for enterprise, but, frankly, the applications are limitless. Without adoption, companies will risk losing competitive edge. In order for sectors of our economy to capture the power of AI and to implement it efficiently and responsibly, we need to be thinking now about how best to architect its application. To this end, AI transformation in enterprise is imperative.
Looking Back to Look Ahead
Application of AI using computers started to evolve in the 1950’s and was experimented on the first commercial computer named Manchester Ferranti. Arthur Samuel built the first machine learning based checkers program in1952 but hardware requirements and the unavailability of distributed technology hindered its proliferation. Fast forward 60 years and the story is very different. AI can now be operationalized at scale in a cost effective manner.
Hadoop (big data technology developed at Yahoo) was one of the foundational elements to persist and process data cost effectively. Availability of open source technologies like Hadoop, evolution of big data technology and reduction in storage, compute RAM and networking costs helped trigger the Big Data revolution and served as an important precursor to today’s AI revolution.
Churn, customer experience, personalization and demand prediction are some areas where AI enablement has the potential to help improve efficiencies and increase revenue for enterprise, but, frankly, the applications are limitless
My understanding of the power of AI and the importance of its adoption is best exemplified by my firsthand experience building scaled platforms for AI capabilities. While I was at Zynga in 2011, I was responsible for operationalizing a scaled platform used to ingest 25 terabytes of data a day from dozens of data sources and that surfaced insights about the health of the infrastructure, game applications and security posture. The value of centralizing this data platform was astronomical. The scale issues to ingest tens of terabytes of data across multiple products were addressed in one central platform. In so doing, data products could be managedwith a single technology interface, infrastructure efficiency was created and there was correlation across multiple data sources, avoiding redundancy of data sources in multiple platforms. There was huge cost savings and improved developer efficiencies by centralizing the platform and standardizing the technology across multiple AI product development initiatives.
This experience leads me to believe and build a central petabyte scale AI platform to launch multiple AI-based data products and solutions for Verizon in 2013. Dubbed Orion, the platform was operationalized in 2015, and it has been evolving since inception to help deliver several AI products and capabilities while injesting more than 75 billion records a day.
Basics of Starting AI Transformation in an Enterprise.
Artificial Intelligence is nascent enough that we’ve yet to realize hard and fast rules for deployment. As it develops, we should expect implementation best practices to evolve. However, there are some important things enterprise organizations can consider today when operationalizing AI-capable platforms.
Articulating and committing to a strategy is crucial. It’s expensive and inefficient to have multiple data and AI platforms distributed within the enterprise, so a centralized deployment tends to yield the most benefit. Embed in your company culture the value of the strategy and work to achieve buy-in from key stakeholder groups, including at the C-suite level. Since the adoption of Hadoop, Verizon Media’s engineering culture has always been to centralize data and AI capabilities as much as possible and this is embraced by our engineering community as best practice.
You’ve set the foundation of the house with a strategy, now it’s time to frame it out. This starts with robust, horizontally scalable infrastructure, including ample compute, storage, RAM and networking capabilities. It’s important to build fault-tolerant distributed data storage capacity (e.g. Hadoop) that can ensure high-volume data flows with granular access. Operationalize frameworks like Kafka or NiFi to easily move data in a secure and controlled manner. Enable technology stacks like Spark help to process data. Enable the AI frameworks like Tensorflow, Torch, and Keras that can best serve your AI needs. Develop mechanisms that facilitate security, privacy governance and identity management. Finally, business capabilities can be enabled through secure API layer.
Teach your AI to be ethical before it’s too late. AI technology only knows what you give it and, without safeguards, it may extrapolate or infer in unintended ways. Investing in a set of ethical standards for AI will help to mitigate the risks. Controls should include technical standards, granular controls, enforcement and a governance framework. And have a philosophy: what is it that you hope to achieve for society when deploying AI?
AI is not a product, nor a platform, but it’s a new way of architecting modern day solutions and products with AI as the brain. With those stakes, make sure you have the right talent on the job. It’s not enough to build a framework for AI deployment. Having skilled technologists who understand the underpinnings of AI will help to maximize its effect on the organization and the stakeholders you’re working to serve.
Business groups should be encouraged within the enterprise to help build AI-powered products or solutions using a central AI platform. AI transformation is most likely still a multi-year journey, but once executed and, if done correctly, the results have the potential to be truly groundbreaking.
See Also:
ON THE DECK
Featured Vendors
Next Level Business Services (NLB): Applying Digital Transformation to Create Supply & Service Value Chains of the Future
Gerber Technology: Reshaping the Dynamics of the Fashion & Apparel and Flexible Materials Industries
FileFacets: A One-stop Solution for Locating and Identifying Data Across the Enterprise" title="Jennifer Nelson, VP, Sales & Marketing" style="float:left; margin-right:10px; margin-bottom:20px;" width="60px" height="50px">
FileFacets: A One-stop Solution for Locating and Identifying Data Across the Enterprise
Infoworks: Dynamic Data Warehousing on Hadoop that Automatically Ingests and Organizes Enterprise Data for All Use-cases
ThetaRay: Advanced Data Analytics Provide an Enhanced Security Layer to Combat Bank Fraud and Cybercrime
VentureSoft Global: Robust Big Data Solutions for Customer, Product Profitability and Operational Efficiency
Absolut-e Data Com BizStats – Leveraging Artificial Intelligence To Extract The True Potential Of Data
Relational Solutions, Inc.: Delivers Enterprise Demand Signal Repositories to the Consumer Goods Ind
Emagine International: Adaptive Contextual Marketing Platform for Personalized Customer Interactions
Cygnus Professionals: Translate Big Data into Actions: An Analytics Platform Transforming Enterprise
EDITOR'S PICK
Essential Technology Elements Necessary To Enable...
By Leni Kaufman, VP & CIO, Newport News Shipbuilding
Comparative Data Among Physician Peers
By George Evans, CIO, Singing River Health System
Monitoring Technologies Without Human Intervention
By John Kamin, EVP and CIO, Old National Bancorp
Unlocking the Value of Connected Cars
By Elliot Garbus, VP-IoT Solutions Group & GM-Automotive...
Digital Innovation Giving Rise to New Capabilities
By Gregory Morrison, SVP & CIO, Cox Enterprises
Staying Connected to Organizational Priorities is Vital...
By Alberto Ruocco, CIO, American Electric Power
Comprehensible Distribution of Training and Information...
By Sam Lamonica, CIO & VP Information Systems, Rosendin...
The Current Focus is On Comprehensive Solutions
By Sergey Cherkasov, CIO, PhosAgro
Big Data Analytics and Its Impact on the Supply Chain
By Pascal Becotte, MD-Global Supply Chain Practice for the...
Technology's Impact on Field Services
By Stephen Caulfield, Executive Director, Global Field...
Carmax, the Automobile Business with IT at the Core
By Shamim Mohammad, SVP & CIO, CarMax
The CIO's role in rethinking the scope of EPM for...
By Ronald Seymore, Managing Director, Enterprise Performance...
Driving Insurance Agent Productivity with Mobile and Big...
By Brad Bodell, SVP and CIO, CNO Financial Group, Inc.
Transformative Impact On The IT Landscape
By Jim Whitehurst, CEO, Red Hat
Get Ready for an IT Renaissance: Brought to You by Big...
By Clark Golestani, EVP and CIO, Merck
Four Initiatives Driving ECM Innovation
By Scott Craig, Vice President of Product Marketing, Lexmark...
Technology to Leverage and Enable
By Dave Kipe, SVP, Global Operations, Scholastic Inc.
By Meerah Rajavel, CIO, Forcepoint
AI is the New UI-AI + UX + DesignOps
By Amit Bahree, Executive, Global Technology and Innovation,...
Evolving Role of the CIO - Enabling Business Execution...
By Greg Tacchetti, CIO, State Auto Insurance
Read Also
Balancing Innovation and Standardization
Leveraging Quality Engineering and DevOps to thrive in the face of...
Pioneering the Future Through Technology Innovation
Reimagine Naval Power
The Shifting Enterprise Operating System Ecosystem Is Helping...
Digital TRANSFORMATION: Challenge the Status Quo, Be Disruptive.
