
On Big-Data, AI and Digital-Transformation

![On Big-Data, AI and Digital-Transformation Mohak Shah, Ph.D., VP - AI and Machine Learning, LG Electronics[KRX: 066570]](https://www.cioreview.com/newsimages/special/9307fDlT.jpeg)
Mohak Shah, Ph.D., VP - AI and Machine Learning, LG Electronics[KRX: 066570]
Over the past decade, advances in AI and digital technologies combined with big data have fundamentally changed the industry and societal landscape. These technologies have also spawned off entire new industries and introduced novel business models. They have also significantly sped-up the product and offering lifecycle thereby reducing barrier to entries in various domains. Further, commoditization of the building blocks is now allowing organizations and startups to rapidly put the needed software and hardware infrastructure in place to get the ideas off the ground. A swath of new players as well as transformation of existing players in various industries - be it advertising, shopping, ridesharing, autonomous driving, hardware, consumer electronics or lifestyle - is a testimony to this phenomenon. These technologies are exerting a significant pressure for the businesses to move up the value-chain by being more customer-centric and supporting services. The emphasis is on enabling seamlessness and uninterrupted execution of customers’ respective functions both in B2B and B2C contexts. This is nothing short of a new industrial revolution.
​ The core design principles can be a good basis to understand and establish the success and longevity of the initiatives
The resulting market-pressures are forcing legacy companies to transform themselves to stay competitive. These companies are prioritizing transformative initiatives and targeting relevant goals - from optimizing customer experience, increasing efficiencies and productivity, and devising novel revenue opportunities and business models.
However, these organizations are still struggling to successfully and reproducibly translate the scale and extent of opportunities into tangible outcomes. A recent McKinsey study in fact found that most digital transformation efforts have failed. Analyzing these failures have identified some core gaps – from broader economic forces or market requirements all the way to challenges in chasing the moving target of a new promising business model. While these are pertinent, I believe there are additional important reasons why transformation efforts fail internally – treating transformation efforts as solely technological efforts disregarding the people and cultural aspects; resistance from legacy forces to new ideas and competence; lack of proper incentivization and benefit structures; and morphing of initiatives to align with traditional business.
Organizations must realize the importance of the aspects of digital transformation other than the technology. They need to identify the right transformation objectives keeping in mind both the growth goals and the evolving market landscape. Hence, a business vision is crucial in anchoring the transformation efforts. This also makes sure that the projects are not one-off efforts but contribute to over-arching coherent strategy arising out of this sound vision.
On the technology front, the transformation efforts need to be supported by a realistic data-strategy that focuses not just on internal efforts around data organization and management, but also covers the broader aspects of the ownership, acquisition, governance and persistence of data. The same goes with the analytics strategy that should focus on building an underlying basis that is not dependent on a single set of algorithmic choices but is adaptable as the technology evolves.
The core design principles can be a good basis to understand and establish the success and longevity of the initiatives. One of the typically under-appreciated aspects is the necessity of a repeatable development capability. A core differences between software businesses and legacy organizations is the establishment of an underlying software development platform that allows for rapid development, scaling, integration and adoption of the software products seamlessly. Note that these platforms are not homogeneous. The choice of the type of platform(s) depends on the transformation objectives.
Organizations need to pay special attention to enablement – on technological as well as organizational fronts. This goes beyond the software or data and analytics platform to organizational readiness to enable adoption and integration. Appropriate incentivization for different teams to contribute to the overall effort must also be devised. Traditional performance metrics for sub-organizations that are crucial to data acquisition and integration efforts of big-data and AI projects are often misaligned with the transformation objectives. This results in a reluctance (or inability) from these arms to appropriately invest in labor, software or digitization technologies to support the transformation effort. This misalignment of incentives results in risks for any well-intentioned transformation effort and can contribute to overall failure. Further, accounting for company culture and impact on people are extremely necessary when change management is put in place that aligns with these initiatives.
In conclusion, Big data and AI present significant growth opportunities for the industry. However, these can’t be realized unless the organizations are willing to evolve, adapt and be agile. They need to significant flatten the hierarchies, adopt a fast-cycle business model and build a solid technological, structural, organizational and most importantly diverse foundation – i.e., a long-term outlook. Maintaining a laissez-faire approach is a recipe for failure down the line.
See Also:
ON THE DECK
Featured Vendors
Next Level Business Services (NLB): Applying Digital Transformation to Create Supply & Service Value Chains of the Future
Gerber Technology: Reshaping the Dynamics of the Fashion & Apparel and Flexible Materials Industries
FileFacets: A One-stop Solution for Locating and Identifying Data Across the Enterprise" title="Jennifer Nelson, VP, Sales & Marketing" style="float:left; margin-right:10px; margin-bottom:20px;" width="60px" height="50px">
FileFacets: A One-stop Solution for Locating and Identifying Data Across the Enterprise
Infoworks: Dynamic Data Warehousing on Hadoop that Automatically Ingests and Organizes Enterprise Data for All Use-cases
ThetaRay: Advanced Data Analytics Provide an Enhanced Security Layer to Combat Bank Fraud and Cybercrime
VentureSoft Global: Robust Big Data Solutions for Customer, Product Profitability and Operational Efficiency
Absolut-e Data Com BizStats – Leveraging Artificial Intelligence To Extract The True Potential Of Data
Relational Solutions, Inc.: Delivers Enterprise Demand Signal Repositories to the Consumer Goods Ind
Emagine International: Adaptive Contextual Marketing Platform for Personalized Customer Interactions
Cygnus Professionals: Translate Big Data into Actions: An Analytics Platform Transforming Enterprise
EDITOR'S PICK
Essential Technology Elements Necessary To Enable...
By Leni Kaufman, VP & CIO, Newport News Shipbuilding
Comparative Data Among Physician Peers
By George Evans, CIO, Singing River Health System
Monitoring Technologies Without Human Intervention
By John Kamin, EVP and CIO, Old National Bancorp
Unlocking the Value of Connected Cars
By Elliot Garbus, VP-IoT Solutions Group & GM-Automotive...
Digital Innovation Giving Rise to New Capabilities
By Gregory Morrison, SVP & CIO, Cox Enterprises
Staying Connected to Organizational Priorities is Vital...
By Alberto Ruocco, CIO, American Electric Power
Comprehensible Distribution of Training and Information...
By Sam Lamonica, CIO & VP Information Systems, Rosendin...
The Current Focus is On Comprehensive Solutions
By Sergey Cherkasov, CIO, PhosAgro
Big Data Analytics and Its Impact on the Supply Chain
By Pascal Becotte, MD-Global Supply Chain Practice for the...
Technology's Impact on Field Services
By Stephen Caulfield, Executive Director, Global Field...
Carmax, the Automobile Business with IT at the Core
By Shamim Mohammad, SVP & CIO, CarMax
The CIO's role in rethinking the scope of EPM for...
By Ronald Seymore, Managing Director, Enterprise Performance...
Driving Insurance Agent Productivity with Mobile and Big...
By Brad Bodell, SVP and CIO, CNO Financial Group, Inc.
Transformative Impact On The IT Landscape
By Jim Whitehurst, CEO, Red Hat
Get Ready for an IT Renaissance: Brought to You by Big...
By Clark Golestani, EVP and CIO, Merck
Four Initiatives Driving ECM Innovation
By Scott Craig, Vice President of Product Marketing, Lexmark...
Technology to Leverage and Enable
By Dave Kipe, SVP, Global Operations, Scholastic Inc.
By Meerah Rajavel, CIO, Forcepoint
AI is the New UI-AI + UX + DesignOps
By Amit Bahree, Executive, Global Technology and Innovation,...
Evolving Role of the CIO - Enabling Business Execution...
By Greg Tacchetti, CIO, State Auto Insurance
Read Also
Challenges that Compliance Officers face Today
Risk Exposures and How to Tackle them
Creativity Overcomes Scarcity
Putting The Customer At The Centre Of The Energy Transition
The Rise of Algorithmic Trading In The Power Sector
How to Align the Business and Operating Models of an Insurance Company
